Abstract

Novel methods are proposed for dealing with event-tree analysis under imprecise probabilities, where one could measure chance or uncertainty without sharp numerical probabilities and express available evidence as upper and lower previsions (or expectations) of gambles (or bounded real functions). Sets of upper and lower previsions generate a convex set of probability distributions (or measures). Any probability distribution in this convex set should be considered in the event-tree analysis. This article focuses on the calculation of upper and lower bounds of the prevision (or the probability) of some outcome at the bottom of the event-tree. Three cases of given information/judgments on probabilities of outcomes are considered: (1) probabilities conditional to the occurrence of the event at the upper level; (2) total probabilities of occurrences, that is, not conditional to other events; (3) the combination of the previous two cases. Corresponding algorithms with imprecise probabilities under the three cases are explained and illustrated by simple examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.