Abstract
This paper builds on the identification results and estimation tools for continuous difference-in-difference designs in Callaway, Goodman-Bacon, and Sant'Anna (2024) to discuss aggregation strategies for event studies with continuous treatments. Estimates from continuous designs are functions of the treatment dosage/intensity variable. Nonparametric plots of these functions show heterogeneity across doses but not heterogeneity over time. Event-study-type plots of aggregated parameters achieve the opposite. We describe how partially aggregating across treatment doses and event time can lead to readable yet nuanced figures that reflect how causal effects evolve over time, potentially in different parts of the treatment dose distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.