Abstract

Although physical models are improving our understanding of the crustal processes that lead to large earthquakes, observing their preparatory phases is still challenging. We show that the spatio-temporal evolution of the ground motion of small magnitude earthquakes can shed light on the preparatory phase of three main earthquakes that occurred in central Italy between 2016 and 2017. We analyze systematic deviations of peak ground accelerations generated by each earthquake from the values predicted by a reference ground motion model calibrated for background seismicity and refer to such deviations as event-specific ground motion anomalies (eGMAs). The eGMA temporal behavior indicates that during the activation phase of the main earthquakes, the ground shaking level deviates, positively or negatively, from the values expected for the background seismicity. eGMA can be exploited as beacons of stress change and help to monitor the mechanical state of the crust and the nucleation of large earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.