Abstract
Objective. Various approaches have been applied for the quantification of event-related desynchronization/synchronization (ERD/ERS) in EEG/MEG data analysis, but most of them are based on band power analysis. In this paper, we sought a novel method using a nonlinear measurement to quantify the ERD/ERS time course of motor-related EEG. Approach. We applied Kolmogorov entropy to quantify the ERD/ERS time course of motor-related EEG in relation to hand movement imagination and execution for the first time. To further test the validity of the Kolmogorov entropy measure, we tested it on five human subjects for feature extraction to classify the left and right hand motor tasks. Main results. The results show that the relative increase and decrease of Kolmogorov entropy indicates the ERD and ERS respectively. An average classification accuracy of 87.3% was obtained for five subjects. Significance. The results prove that Kolmogorov entropy can effectively quantify the dynamic process of event-related EEG, and it also provides a novel method of classifying motor imagery tasks from scalp EEG by Kolmogorov entropy measurement with promising classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.