Abstract

Neuroelectric oscillations provide important tools to study information processing in the brain. In this paper, major concepts and advantages of event-related oscillations (EROs) are considered, with a focus on their relevance for developmental research. Findings from previous studies in passive and oddball conditions are summarized to demonstrate that the age-dependent power decrease of theta (4–7 Hz) and alpha (8–14 Hz) EROs is accompanied by an increase in the synchronization of these oscillations. New data are presented to test whether this dissociation depends on processing demands in a frequency-specific manner. Results from an auditory serial learning task with working memory activation performed by 70 subjects (children from 6 to 10 years of age and adults) indicate that this effect was observed for theta and slow alpha oscillations, whereas an age-dependent decrease in event-related phase synchronization was found for fast alpha oscillations. It is concluded that phase synchronization of only the major theta and alpha EROs may reflect the neurobiological maturation of neural networks involved in perception. Phase synchronization of EROs, however, especially from faster frequency bands, essentially depends on the mode of network involvement and functional competence, which is associated with cognitive processing abilities or strategies in the course of development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.