Abstract
Several different models for coercivity are discussed. There are two main situations: i) nanocrystalline magnets, with grain size bellow the single domain particle size, and ii) magnets with grain size above single domain particle size. The described theories and models are general, and can be applied in either NdFeB magnets, SmFeCoCuZr or strontium ferrite magnets. The spring effect observed in isotropic nanocrystalline magnets can be explained with the Stoner-Wohlfarth model. Modifications of the Stoner-Wohlfarth model are necessary to take into account the effect of interaction between grains. When the grain size is above the single domain size, energy considerations show that nucleation should occur at the surface of grains. Nucleation is interpreted as a two-step process, where domain wall displacement occurs for grain size above single domain size, after a nucleus is first formed. The effect of grain size on the coercive field is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.