Abstract

Phase-sensitive optical time domain reflectometer (Φ-OTDR) is an emergent distributed optical sensing system with the advantages of high localization accuracy and high sensitivity. It has been widely used for intrusion identification, pipeline monitoring, under-ground tunnel monitoring, etc. Deep learning-based classification methods work well for Φ-OTDR event recognition tasks with sufficient samples. However, the lack of training data samples is sometimes a serious problem for these data-driven algorithms. This paper proposes a novel feature synthesizing approach to solve this problem. A mixed class approach and a reinforcement learning-based guided training method are proposed to realize high-quality feature synthesis. Experiment results in the task of eight event classifications, including one unknown class, show that the proposed method can achieve an average classification accuracy of 42% for the unknown class and obtain its event type, meanwhile achieving a 74% average overall classification accuracy. This is 29% and 7% higher, respectively, than those of the ordinary instance synthesizing method. Moreover, this is the first time that the Φ-OTDR system can recognize a specific event and tell its event type without collecting its data sample in advance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.