Abstract

With the advancement in the field of Internet-of-Things (IoT), event monitoring applications have rapidly evolved from a simple event data acquisition towards predictive event analytics involving multi-sensory data aggregation in a distributed environment. Existing event monitoring schemes are mainly relying on ine_cient centralized processing mechanism, which may lead to the common single-point of failure for the entire system. In addition, there is no proper method for verifying the event data generated by the monitoring system. In this paper, we present a distributed event monitoring scheme using a Hierarchical Graph Neuron (HGN) distributed pattern recognition algorithm. HGN is a single-cycle learning graph-based recognition scheme that is modelled for in-network deployment. In this work, event data retrieved from multi-sensory IoT devices within a distributed event monitoring network is converted into pattern. To address the event data verification problem, we integrate our proposed scheme with blockchain technology. Combining this IoT event monitoring capabilities with blockchain-based data storage and verification could leads towards a scalable event detection and monitoring model for large-scale network. The results obtained from our simulation shows that the proposed scheme o_ers high event detection accuracy and capable of minimizing the event storage requirements on blockchain network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.