Abstract

Traditional spiking learning algorithm aims to train neurons to spike at a specific time or on a particular frequency, which requires precise time and frequency labels in the training process. While in reality, usually only aggregated labels of sequential patterns are provided. The aggregate-label (AL) learning is proposed to discover these predictive features in distracting background streams only by aggregated spikes. It has achieved much success recently, but it is still computationally intensive and has limited use in deep networks. To address these issues, we propose an event-driven spiking aggregate learning algorithm (SALA) in this article. Specifically, to reduce the computational complexity, we improve the conventional spike-threshold-surface (STS) calculation in AL learning by analytical calculating voltage peak values in spiking neurons. Then we derive the algorithm to multilayers by event-driven strategy using aggregated spikes. We conduct comprehensive experiments on various tasks including temporal clue recognition, segmented and continuous speech recognition, and neuromorphic image classification. The experimental results demonstrate that the new STS method improves the efficiency of AL learning significantly, and the proposed algorithm outperforms the conventional spiking algorithm in various temporal clue recognition tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call