Abstract

In this study, a general framework integrating a data-driven estimation model with sequential probability updating is suggested for detecting quality faults in water distribution systems from multivariate water quality time series. The method utilizes artificial neural networks (ANNs) for studying the interplay between multivariate water quality parameters and detecting possible outliers. The analysis is followed by updating the probability of an event, initially assumed rare, by recursively applying Bayes' rule. The model is assessed through correlation coefficient (R(2)), mean squared error (MSE), confusion matrices, receiver operating characteristic (ROC) curves, and true and false positive rates (TPR and FPR). The product of the suggested methodology consists of alarms indicating a possible contamination event based on single and multiple water quality parameters. The methodology was developed and tested on real data attained from a water utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.