Abstract
We propose a novel approach toward event detection in real-world continuous video sequences. The method: 1) is able to model arbitrary-order non-Markovian dependences in videos to mitigate local visual ambiguities; 2) conducts simultaneous event segmentation and labeling; and 3) is time-window free. The idea is to represent a video as an event stream of both high-level semantic events and low-level video observations. In training, we learn a point process model called a piecewise-constant conditional intensity model (PCIM) that is able to capture complex non-Markovian dependences in the event streams. In testing, event detection can be modeled as the inference of high-level semantic events, given low-level image observations. We develop the first inference algorithm for PCIM and show it samples exactly from the posterior distribution. We then evaluate the video event detection task on real-world video sequences. Our model not only provides competitive results on the video event segmentation and labeling task, but also provides benefits, including being interpretable and efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.