Abstract
Data-driven prognostic industrial asset health management is essential to improve reliability and availability of industrial machineries. Industrial sensors capture multiple phenomena of underlying assets like environment impact, system degradation, process variation, instrument noise, control system response or user induced actions. Some of these phenomena have distinct signature and have impact on component life and remaining useful life. Capturing these events’ signature help to apply advanced AI algorithm to categorize various failure modes and early detection. For Ex: Some of transient events can contribute to thermal cycling of component and in turn reduces life of high temperature and low thermal mass components. Due to random and nonstandard nature of these events, it is extremely challenging to detect and extract these events. Existing change point detection algorithms have limitations to detect sudden variations, which is common due to process or control actions. The noisy signal adds additional challenge to differentiate between important event and noise. In this work of time series analysis, we propose a new approach for consistent estimation of numbers and locations of the change-points. With this tunable algorithm combined with event labelling and pattern search, we can detect events of our functional needs and use them as a feature for our prediction models. This methodology has opened exciting opportunity to further analyse these events with development of classification system and time to fail prediction models and also apply large language models for time series data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.