Abstract

This article discusses the synchronization problem for a class of multiple delayed neural networks (MDNNs) with a directed switching topology by using an event-triggering strategy. First, a new differential inequality with delay is shown, which is a generalization of Halanay-type inequalities. Then, the sufficient conditions of event-based synchronization (quasisynchronization) for MDNN with sequentially connected topology are obtained by using this inequality and the iterative method. Meantime, we prove that Zeno behavior can be avoided under the designed event-triggering rules. As an extension, MDNN with jointly connected topology is also discussed. Finally, a numerical example is listed to illustrate the results in theory analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call