Abstract

In this paper, we investigate the global synchronization control problem for memristive neural networks (MNNs) with time-varying delay. A novel event-triggered controller is introduced with the linear diffusive term and discontinuous sign term. In order to greatly reduce the computation cost of the controller under certain event-triggering condition, two event-based control schemes are proposed with static event-triggering condition and dynamic event-triggering condition. Some sufficient conditions are derived by these control schemes to ensure the response MNN to be synchronized with the driving one. Furthermore, under certain event-triggering conditions, a positive lower bound is achieved for the interexecution time to guarantee that Zeno behavior cannot be executed. Finally, numerical simulations are provided to substantiate the effectiveness of the proposed theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call