Abstract

This paper is concerned with the event-based fusion estimation problem for a class of multi-rate systems (MRSs) subject to sensor degradations. The MRSs under consideration include several sensor nodes with different sampling rates. To facilitate the filter design, the MRSs are transformed into a single-rate system (SRS) by using an augmentation approach. A set of random variables obeying known probability distributions are used to characterize the phenomenon of the sensor degradations. For the purpose of saving the limited communication resources, the event-triggering mechanism (ETM) is adopted to regulate the transmission frequency of the measurements. For the addressed MRSs, we aim to design a set of event-based local filters for each sensor node such that the upper bound of each local filtering error covariance (FEC) is guaranteed and minimized by designing the filter parameter appropriately. Subsequently, the local estimates are fused with the aid of covariance intersection (CI) fusion approach. Finally, a numerical experiment is exploited to demonstrate the usefulness of the developed fusion estimation algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.