Abstract

The paper presents a simple yet rigorous analysis of the transient of the spatial distribution of the kinetic energy of a classical ideal monoatomic dilute gas that passes from non-equilibrium to equilibrium. The proposed approach is event-based, in the sense that the evolution of the system is analyzed as a function of the random number of collisions in a given time interval. Taking a very simple yet realistic model of collision, the paper shows that collisions between atoms lead exponentially to energy equipartition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.