Abstract

<p><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">A decomposition (</span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">1</span></sub><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">2</span></sub><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">3</span></sub><span style="font-family: 宋体; font-size: medium;">,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">n</span></sub><span style="font-family: 宋体; font-size: medium;">) of a graph G is an Arithmetic Decomposition(AD) if |</span><span><span style="font-family: 宋体; font-size: medium;">E</span></span><span style="font-family: 宋体; font-size: medium;">(</span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">i</span></sub><span style="font-family: 宋体; font-size: medium;">)| = a + (i – 1)d for all i = </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">1, 2,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, n and a, d</span></span><span><span style="font-size: medium;">∈</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">Z</span><sup><span style="font-family: 宋体; font-size: small;">+</span></sup><span style="font-family: 宋体; font-size: medium;">. Clearly q = </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">n/2</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> [2a + (n – 1)d]. The AD is a CMD if a = 1 and d = 1. In this paper we introduced the new concept Even Decomposition of graphs. If a = 2 and d = 2 in AD, then q = n(n + 1). That is, the number of edges of G </span><span><span style="font-family: 宋体; font-size: medium;">is the sum of first n even numbers 2, 4, 6,</span></span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, 2n. Thus we call the AD with a =</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> 2 and</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> d = 2 as Even Decomposition. Since the number of edges of each subgraph of G is even, we denote the Even Decomposition as (</span><span><span style="font-family: 宋体; font-size: medium;">G</span><sub><span style="font-family: 宋体; font-size: small;">2</span></sub></span><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span><sub><span style="font-family: 宋体; font-size: small;">4</span></sub></span><span style="font-family: 宋体; font-size: medium;">,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">2n</span></sub><span style="font-family: 宋体; font-size: medium;">). </span></span></p><p><span lang="EN-US"><span style="font-family: Calibri; font-size: medium;"> </span></span></p>

Highlights

  • In this paper we investigate Even Star decomposition (ESD) of Complete Bipartite Graphs

  • Proof: Assume K2t,st admits Even Star Decomposition (ESD) (S2, S4, ... , Sk2t+2−2), we know that q(K2t,st) = 2tst, 2tst = n(n+1)

  • We prove that the result is true for t = g +1, that is to prove K2g+1,sg+1 admits ESD

Read more

Summary

Introduction

A decomposition (G1, G2, G3, ,Gn) of G is said to be an Arithmetic Decomposition (AD) if |E(Gi)| = a+(i – 1)d for all i. If a = 1 and d = 2, AD 2 is an Arithmetic Odd Decomposition (AOD). N(n+1) is the sum of first n even numbers 2, 4, 6, , 2n. We call this Decomposition as an Even Decomposition denoted by (G2, G4, G6, , G2n). The following theorem is a necessary and sufficient condition for a graph G admits Even Decomposition

Theorem
Example

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.