Abstract
The responsiveness of older individuals' skeletal muscle to anabolic strategies may be impaired. However, direct comparisons within the same experimental setting are sparse. The aim of this study was to assess the resting and post-resistance exercise muscle protein synthesis rates in response to two types of milk protein and carbohydrate using a unilateral exercise leg model. Twenty-seven older (69 ± 1year, mean ± SE) men were randomly assigned one of three groups: Whey hydrolysate (WH), caseinate (CAS), or carbohydrate (CHO). By applying stable isotope tracer techniques (L-[15N]phenylalanine), the fasted-rested (basal) myofibrillar fractional synthesis rate (FSR) was measured. Hereafter, FSR was measured in the postprandial phase (0.45g nutrient/kg LBM) in both legs, one rested (fed-rest) and one exercised (10 × 8 reps at 70% 1RM; fed-exercise). In addition, the activity of p70S6K and venous plasma insulin, phenylalanine, and leucine concentrations were measured. Insulin, phenylalanine, and leucine concentrations differed markedly after intake of the different study drinks. The basal FSR in WH, CAS, and CHO were 0.027 ± 0.003, 0.030 ± 0.003, and 0.030 ± 0.004%/h, the fed-rested FSR were 0.043 ± 0.004, 0.045 ± 0.003, and 0.035 ± 0.004%/h, and the fed-exercised FSR were 0.041 ± 0.004, 0.043 ± 0.004, and 0.034 ± 0.004%/h, respectively. No significant differences were observed at any state between the groups. Fed-rested- and fed-exercised FSR were higher than basal (P < 0.001). 3h after exercise and feeding, no significant group differences were detected in the activity of p70S6K. Milk protein and carbohydrate supplementation stimulate myofibrillar protein synthesis in older men, with no further effect of heavy resistance exercise within 0-3h post exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.