Abstract
AbstractFlooding and salinization triggered by storm surges threaten the survival of coastal forests. After a storm surge event, soil salinity can increase by evapotranspiration or decrease by rainfall dilution. Here we used a 1D hydrological model to study the combined effect of evapotranspiration and rainfall on coastal vegetated areas. Our results shed light on tree root uptake and salinity infiltration feedback as a function of soil characteristics. As evaporation increases from 0 to 2.5 mm/day, soil salinity reaches 80 ppt in both sandy and clay loam soils in the first 5 cm of soil depth. Transpiration instead involves the root zone located in the first 40 cm of depth, affecting salinization in a complex way. In sandy loam soils, storm surge events homogeneously salinize the root zone, while in clay loam soils salinization is stratified, partially affecting tree roots. Soil salinity stratification combined with low permeability maintain root uptakes in clay loam soils 4/5‐time higher with respect to sandy loam ones. When cumulative rainfall is larger than potential evapotranspiration ETp (ETp/Rainfall ratios lower than 1), dilution promotes fast recovery to pre‐storm soil salinity conditions, especially in sandy loam soils. Field data collected after two storm surge events support the results obtained. Electrical conductivity (a proxy for salinity) increases when the ratio ETp/Rainfall is around 1.76, while recovery occurs when the ratio is around 0.92. In future climate change scenarios with higher temperatures and storm‐surge frequency, coastal vegetation will be compromised, because of soil salinity values much higher than tolerable thresholds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.