Abstract

AbstractArctic vegetation is known to influence Arctic surface temperatures through albedo. However, it is less clear how plant evaporative resistance and albedo independently influence surface climate at high latitudes. We use surface properties derived from two common Arctic tree types to simulate the climate response to a change in land surface albedo and evaporative resistance in factorial combinations. We find that lower evaporative resistances lead to an increase of low clouds. The reflection of light due to the difference in albedos between vegetation types is similar to the loss of incident sunlight due to increased cloud cover resulting from lower evaporative resistance from vegetation change. Our results demonstrate that realistic changes in evaporative resistance can have an equal impact on surface temperature to changes in albedo and that cloud feedbacks play a first‐order role in determining the surface climate response to changes in Arctic land cover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.