Abstract

When a work scenario in protective clothing is a nominal two hours of work followed by a short break, the level of heat stress must be limited to conditions of thermal equilibrium. By comparing changes in maximum sustainable work rate in a fixed environment, differences due to different protective clothing ensembles can be determined. To illustrate this principle, two protective clothing ensembles were examined. The Basic Ensemble was a cotton blend coverall over gym shorts with hard hat, gloves and full face mask respirator. The Enhanced Ensemble added a light weight, surgical scrub suit under the coveralls, plus a hood worn under the hard hat. Five young, acclimated males were the test subjects. Environmental conditions were fixed at T db=32°C and T pwb=26°C. After a physiological steady state was established at a low rate of work, treadmill speed was increased by 0.04 m/s every 5 min. The trial continued until thermal equilibrium was clearly lost. A critical treadmill speed was noted at the point thermal equilibrium was lost for each ensemble and subject. The drop in treadmill speed from the basic to enhanced ensemble was 11%. Based on measured values of average skin temperature and metabolic rate at the critical work rate and estimated values of clothing insulation, the average evaporative resistances for the basic and enhanced ensembles were 0.018 and 0.026 kPa m 2/W, respectively. Relevance to industry Protective clothing decisions are based on the need to reduce the risk of skin contact with chemical or physical hazards. Sometimes over-protection of the skin results in a hazard secondary to the skin, such as heat stress. With or without over-protection, protective clothing decisions may affect the level of heat stress and result in lower rates of sustainable work. This paper illustrates the affects of a relatively small change in protective clothing requirements on the ability to work in the heat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.