Abstract

Experiments on measuring the rate of evaporation of liquid sessile droplets into air show that the rate of evaporation increases in the presence of forced convection flows. However, data on the effect of convection on evaporation are often contradictory and should be clarified. The paper presents a numerical analysis of evaporation from the surface of a water droplet subjected to forced convection in the gas phase. The drop is located on a smooth horizontal isothermal substrate; the mode with constant contact angle is considered. The shape of the drop has axial symmetry, the same for the velocities and pressure. Forced convection compatible with the symmetry conditions are represented by flows directed downward along the axis of the system and diverging along the sides near the drop and the substrate. The mathematical model is constructed for evaporation controlled by diffusion in the gas phase and takes into account surface tension, gravity, and viscosity in both media, buoyancy and Marangoni convection. The results indicate the existence of the mutual influence of liquid and gaseous media. Thus, a drop vibrates under the influence of movements in the atmosphere, which generates a density wave in the gas: the drop «sounds». The magnitude of the velocity in a liquid is 50 times less than the characteristic velocity in air. It is found that the evaporation rate does not change in the presence of forced convection flows, which contradicts most of the experimental works. The reason for the discrepancies is supposed to be the appearance of nonequilibrium conditions at the boundary of the condensed phase: under these conditions, the evaporation regime ceases to be diffusional.

Highlights

  • Financial disclosure: The authors have no a financial or property interest in any material or method mentioned

  • The paper presents a numerical analysis of evaporation from the surface of a water droplet subjected to forced convection in the gas phase

  • Forced convection compatible with the symmetry conditions are represented by flows directed downward along the axis of the system and diverging along the sides near the drop and the substrate

Read more

Summary

Схема компьютерного эксперимента и принятые обозначения

Рассмотрена капля жидкости, лежащая на горизонтальной поверхности; R – радиус равновеликой сферической капли. Капля находится в атмосфере нейтрального неконденсирующегося газа. Размеры вычислительного объема намного превышают радиус капли, RK , HK R Построение разностной схемы происходит следующим образом [16]: 1) проводится вертикальное разбиение объема для z ≤ H , так что капля оказывается поделенной на слои одинаковой толщины hz с радиусом ri ; 2) проводится вертикальное разбиение пространства над каплей 1 не показано), шаг вертикального разбиения в газе при z > H может превышать шаг hz ; 3) проводится горизонтальное разбиение вычислительного объема

Основные приближения модели
Уравнения и граничные условия
ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ
Вид течений в газе и жидкости
Зависимость скорости испарения от времени

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.