Abstract

2D nanosheets have been widely explored as electrode materials owing to their extraordinarily high electrochemical activity and fast solid-state diffusion. However, the scalable electrode fabrication based on this type of material usually suffers from severe performance losses due to restricted ion-transport kinetics in a large thickness. Here, a novel strategy based on evaporation-induced assembly to enable directional ion transport via forming vertically aligned nanosheets is reported. The orientational ordering is achieved by a rapid evaporation of mixed solvents during the electrode fabrication process. Compared with conventional drop-cast electrodes, which exhibit a random arrangement of the nanosheets and obvious decrease of rate performance with increasing thickness, the electrode based on the vertically aligned nanosheets is able to retain the original high rate capability even at high mass loadings and electrode thickness. Combined electrochemical and structural characterization reveals the electrode composed of orientation-controlled nanosheets to possess lower charge-transfer resistances, leading to more complete phase transformation in the active material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.