Abstract
Experiments are carried out here to measure the evaporation heat transfer coefficient hr and associated frictional pressure drop ΔPf in a vertical plate heat exchanger for refrigerant R-410A. The heat exchanger consists of two vertical counterflow channels which are formed by three plates whose surface corrugations have a sine shape and a chevron angle of 60 deg. Upflow boiling of refrigerant R-410A receives heat from the hot downflow of water. In the experiments, the mean vapor quality in the refrigerant channel is varied from 0.10 to 0.80, the mass flux from 50 to 100 kg/m2s, and the imposed heat flux from 10 to 20 kW/m2 for the system pressure fixed at 1.08 and 1.25 MPa. The measured data indicate that both hr and ΔPr increase with the refrigerant mass flux except at low vapor quality. In addition, raising the imposed heat flux is found to significantly improve hr for the entire range of the mean vapor quality. However, the corresponding friction factor ftp is insensitive to the imposed heat flux and refrigerant pressure. Based on the present data, empirical correlations are provided for hr and ftp, for R-410A in the plate heat exchanger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.