Abstract

A new analytic solution is presented for predicting evaporation rates from plane liquid surfaces into a neutral turbulent boundary layer. Conditions of passive dispersion are assumed. Molecular diffusivity is incorporated into the boundary conditions. Both smooth and rough surfaces are considered. A comparison with a wide variety of experimental data is made; this tends to reveal inadequacies and inconsistencies in the data, rather than test the theory. The effects of a roughness change at the boundary of the liquid surface and of high vapour pressures can be included for practical purposes by simple formulae. A criterion is derived for the validity of the neglect of buoyancy effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.