Abstract

Abstract. In a warming climate, periods with lower than average precipitation will increase in frequency and intensity. During such periods, known as meteorological droughts, the decline in annual runoff may be proportionally larger than the corresponding decline in precipitation. Reasons behind this exacerbation of runoff deficit during dry periods remain largely unknown, and this challenges the predictability of when this exacerbation will occur in the future and how intense it will be. In this work, we tested the hypothesis that runoff deficit exacerbation during droughts is a common feature across climates, driven by evaporation enhancement. We relied on multidecadal records of streamflow and precipitation for more than 200 catchment areas across various European climates, which distinctively show the emergence of similar periods of exacerbated runoff deficit identified in previous studies, i.e. runoff deficit on the order of −20 % to −40 % less than what expected from precipitation deficits. The magnitude of this exacerbation is two to three times larger for basins located in dry regions than for basins in wet regions, and is qualitatively correlated with an increase in annual evaporation during droughts, in the order of +11 % and +33 % over basins characterized by energy-limited and water-limited evaporation regimes, respectively. Thus, enhanced atmospheric and vegetation demand for moisture during dry periods induces a nonlinear precipitation-runoff relationship for low-flow regimes, which results in an unexpectedly large decrease in runoff during periods of already low water availability. Forecasting onset, magnitude, and duration of these drops in runoff have paramount societal and ecological implications, especially in a warming climate, given their supporting role for safeguarding water, food, and energy. The outcome that water basins are prone to this exacerbation of runoff deficit for various climates and evaporation regimes makes further understanding of its patterns of predictability an urgent priority for water-resource planning and management in a warming and drier climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.