Abstract
Diffusion evaporation of a sessile binary droplet in an atmosphere of a noncondensable carrier gas has been considered. For a droplet consisting of two infinitely miscible liquids, a relation between the current values of solution concentration and volume of the droplet has been derived in an explicit form under the ideal solution approximation. It has been shown that the volume of a sessile binary droplet may, as well as the volume of a free binary droplet, vary nonmonotonically with time. The evaporation of a droplet of an aqueous sulfuric-acid solution has been considered in detail taking into account the nonideality of the solution. Time variations in the volume, base area, and contact angle have been experimentally measured for the sessile droplet of an aqueous sulfuric-acid solution on a hydrophobized substrate. The experimental data obtained at different initial humidities of water-vapor and droplet-solution concentrations have been analyzed within the theory of the stationary isothermal diffusion evaporation of a sessile binary droplet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.