Abstract

Drying a colloidal droplet involves complex physics that is often accompanied by evaporation-induced concentration gradients inside of the droplet, offering a platform for fundamental and technological opportunities, including self-assembly, thin film deposition, microfabrication, and DNA stretching. Here, we investigate the drying, liquid crystalline structures, and deposit patterns of colloidal liquid crystalline droplets undergoing liquid-liquid crystalline phase separation (LLCPS) during evaporation. We show that evaporation-induced progressive up-concentration inside the drying droplets makes it possible to cross, at different speeds, various thermodynamic stability states in solutions of amyloid fibril rigid filamentous colloids, thus allowing access to both metastable states, where phase separation occurs via nucleation and growth, as well as to unstable states, where phase separation occurs via the more elusive spinodal decomposition, leading to the formation of liquid crystalline microdroplets (or tactoids) of different shapes. We present the tactoids "phase diagram" as a function of the position within the droplet and elucidate their hydrodynamics. Furthermore, we demonstrate that the presence of the amyloid fibrils not only does not enhance the pinning behavior during droplet evaporation but also slightly suppresses it, thus minimizing the coffee-ring effect. We observed that microsize domains with cholesteric structure emerge in the drying droplet close to the droplet's initial edge, yet such domains are not connected to form a uniform cholesteric dried film. Finally, we demonstrate that a fully cholesteric dried layer can be generated from the drying droplets by regulating the kinetics of the evaporation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.