Abstract
In this paper, a study of the stability of an evaporating semi-unbounded axisymmetric liquid bridge that forms between a syringe needle tip and a horizontal interface by using both theory and experiments is presented. Here, the evaporation produces slow quasistatic motion such that it allows one to use hydrostatics to analyze interface profiles via solutions to the Young–Laplace equation. The two main parameters, in the hydrostatic limit, are the familiar Bond number and a slenderness parameter that often appears in the literature that studies liquid bridge stability. The axisymmetric Young–Laplace equation yields a semi-analytical solution for capillary pressure at zero Bond number using boundary conditions appropriate for this study. At finite Bond numbers, computation of interface profiles is used to estimate the maximum slenderness. Experiments using water for Bond numbers 0.01 < Bo < 0.1 show good agreement for the maximum slenderness when comparing those results with predictions based on solutions to the Young–Laplace equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.