Abstract

The reduction of wet desulfurization wastewater is one of the important tasks of coal-fired power plants, and it is important for achieving "zero emissions." Evaporation and concentration (E&C) with waste heat is an effective way to reduce wastewater. Here, two typical types of industrial desulfurization wastewater are used to study the change rule of pH and total dissolved solids during wastewater concentration in a circulating evaporation tower. The results indicate that with the increase of concentration ratio, the pH of desulfurization wastewater is decreased rapidly and then is gradually stabilized at 2-3 when SO2 or SO3 is contained in flue gas, and the increase in conductivity is less for wastewater with higher SO42- content. The characteristics of various ions are also analyzed, and the composition and microscopic morphology of the precipitates are characterized during concentration. The growth pattern of Ca2+ concentration is dependent on the ratio of Ca2+ and SO42- in raw wastewater. When the concentration ratio is 7.21, the insoluble and slightly soluble substances undergo precipitation and the solid content is approximately 20%, which can help realize the concentration and reduction of desulfurization wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call