Abstract
In this paper we investigate the linear stability and properties of the planar travelling non–adiabatic combustion front for the cases of zero and non–zero ambient temperature. The speed of the front is estimated numerically using the shooting and relaxation methods. It is shown that for given parameter values the solution either does not exist or there are two solutions with different values of the front speed, which are referred to as ‘fast’ and ‘slow’. The Evans function approach extended by the compound–matrix method is employed to numerically solve the linear–stability problem for the travelling–wave solution. We demonstrate that the ‘slow’ branch of the solutions is unstable, whereas the ‘fast’ branch can be stable or exhibits Hopf or Bogdanov–Takens instability, depending on the parameter values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.