Abstract

We have investigated electrical transport and shot noise in graphene field effect devices. In large width over length ratio W/L graphene strips, we have measured shot noise at low frequency (f=600–850 MHz) in the temperature range of 4.2–30 K. We observe a minimum conductivity of $\frac{4e^{2}}{\pi h}$ and a finite and gate dependent Fano factor reaching the universal value of $\frac{1}{3}$ at the Dirac point, i.e. where the density of states vanishes. These findings are in good agreement with the theory describing that transport at the Dirac point should occur via evanescent waves in perfect graphene samples with large W/L. Moreover, we show and discuss how disorder and non-parallel leads affect both conductivity and shot noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.