Abstract

We describe the interaction of an ultracold diatomic polar molecule with an evanescent-wave mirror. Several features of this system are explored, such as the coupling between internal rovibrational states of the molecule and the laser field. Numerical simulations show quantum reflection and state selection under attainable physical conditions. Such molecular optics components will facilitate the manipulation and trapping of ultracold molecules, and might serve in future applications in several fields, e.g., as devices to filter and select a state for ultracold chemistry, to measure extremely low temperatures of molecules, or to manipulate states for quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call