Abstract

An immunosensor using a long-period grating (LPG) was used for sensitive detection of antibody-antigen reactions. Goat anti-human IgG (antibody) was immobilized on the surface of the LPG, and detection of specific antibody-antigen binding was investigated. This sensor operates using total internal reflection where an evanescent field interacts with bound antibody immobilized over the grating region. The reaction between antibody and antigen altered the LPG transmission spectrum and was monitored in real time as a change in refractive index, thereby eliminating the need for labeling antigen molecules. Human IgG binding was observed to be concentration dependent over a range of 2-100 microg mL-1, and equilibrium bound antigen levels could be attained in approximately 5 min using an initial rate determination. Binding specificity was confirmed using human interleukin-2 and bovine serum albumin as controls, and nonspecific adsorption of proteins did not significantly interfere with detection of binding. Antigen detection in a heterogeneous protein mixture and in crude cell lysate from Escherichia coli was also confirmed. Moreover, regeneration of the LPG surface via diethylamine treatment resulted in approximately 80% removal of bound antigen. Subsequently, fibers reexposed to antigen retained greater than 85% of the initial signal after five consecutive regeneration cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.