Abstract

A schematic model is used to interpret field observations related to the mixed layer response to wind stress at subinertial frequencies. It is shown that subinertial density and pressure fluctuations can arise locally from the finite wavelength character of the wind stress forcing as a fundamental part of the upper ocean transient, wind-driven response on time scales of 2-10 pendulum days. Evanescent vertical motions arise which alter the density field of the pycnocline, and hence the pressure field over the entire upper ocean. It is thus found that in the real ocean driven by wind stress, a transient geostrophic response exists which can be as large or larger than the transient Eckman response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call