Abstract

Reflection, diffraction and transmission of optical waves at the interface between a photonic crystal and the surrounding air can be described by propagating and evanescent Bloch modes. We have found such modes for one of the canonical two-dimensional photonic crystals, identical circular cylinders in a square pattern. We present computed out-of-plane band diagrams for propagating as well as evanescent modes, obtained with a numerical method based on Fourier-Bessel expansions. For a given frequency, all the modes are evanescent, except for a few low-order propagating modes. We find that most of the evanescent modes have a purely imaginary z-component of the Bloch wave vector, but many of the modes have a complex z-component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call