Abstract

We propose an atomic funnel consisting of a dark hollow, divergent laser beam and an evanescent light in a short micron-sized hollow optical fiber. The cold atoms extracted from a magneto-optical trap experience effective Sisyphus cooling in the dark hollow beam. We calculate the potential barriers for atomic guiding in the evanescent light and the dark hollow beam, and analyze the atomic losses during the guiding and funneling process. Our results show that the equilibrium three-dimensional root-mean-square momentum of about $4.5\ensuremath{\Elzxh}k$ (temperature $\ensuremath{\sim}2.5\ensuremath{\mu}\mathrm{K}$) and the funneling efficiency of about 95% could be obtained. A low-velocity, intense coherent atomic beam can be generated in this funnel scheme and its potential applications in atom optics are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.