Abstract
Total internal reflection fluorescence spectroscopy (TIRF) is an established technique for following the course of interfacial reactions. Theoretically, by gathering TIRF data as a function of observation angle, one can obtain the density of fluorophores with respect to distance away from a solid/liquid interface. In order that the practical application of the theory might be explored, variable observation angle data from solutions of fluorescein and from adsorbed layers of fluorescein isothio-cyanate labeled immunoglobulin have been analyzed in terms of simple concentration-distance profiles. In all cases the general shape of the data curves was found to conform to the theoretical expectation. Layer thickness determinations varied over a range of 20 to 100 nm, with concentrations in the layer ranging from 12 to 61 mg/mL. The theoretical background, sources of error, and system improvements are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.