Abstract
The Optimal Discovery Procedure (ODP) is a method for simultaneous hypothesis testing that attempts to gain power relative to more standard techniques by exploiting multivariate structure [1]. Specializing to the example of testing whether components of a Gaussian mean vector are zero, we compare the power of the ODP to a Bonferroni-style method and to the Benjamini-Hochberg method when the testing procedures aim to respectively control certain Type I error rate measures, such as the expected number of false positives or the false discovery rate. We show through theoretical results, numerical comparisons, and two microarray examples that when the rejection regions for the ODP test statistics are chosen such that the procedure is guaranteed to uniformly control a Type I error rate measure, the technique is generally less powerful than competing methods. We contrast and explain these results in light of previously proven optimality theory for the ODP. We also compare the ordering given by the ODP test statistics to the standard rankings based on sorting univariate p-values from smallest to largest. In the cases we considered the standard ordering was superior, and ODP rankings were adversely impacted by correlation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.