Abstract

Alzheimer's disease (AD) patients exhibit neuropathological features, such as amyloid-beta (Aβ) plaques and neurogenic fibrillary tangles. These features are thought to play important pathogenic roles, including neuronal dysfunction and apoptosis in the disease progression. Herein, we systematically evaluated a previously reported dual-target isoquinoline inhibitor (9S) for cholinesterase and Aβ aggregation in in vitro and in vivo models of AD. 9S exhibited neuroprotective effects in Aβ-induced and PHF6-induced PC12 cell models as well as in an okadaic acid-induced SH-SY5Y cell model, which were due to attenuated neuronal apoptosis through modulations of GSK-3β phosphorylation and reactive oxygen species. One-month administration of 9S to triple transgenic AD (3 × Tg-AD) female mice (aged 6 months) led to significant improvement in cognitive deficits. Whereas similar treatment regimens for older 3 × Tg-AD female mice (aged 10 months) showed negligible neuroprotective effects. These findings suggest the importance of therapeutic intervention at the early stage of the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call