Abstract

The overall influence of dissolved oxygen (DO) concentrations and biofilm thicknesses on single stage anammox process performance has been evaluated in this study. Results indicated the biofilm displayed a rapid initial increase and followed by a relatively slower formation rate during the operational period. The optimal DO concentration could be determined from a variety of biofilm thicknesses and as well the best biofilm thickness was required among different DO levels. In our lab-scale single stage anammox reactor with a constant hydraulic retention time of 1.0h and influent ammonium of 400mgL−1, an optimal nitrogen removal capacity was acquired (TN removal loading of 2.18kg-Nm−3d−1) at the DO level of 0.6mgL−1 and biofilm thickness of 700μm. Species identification showed that Nitrosomonas related aerobic ammonium-oxidizing bacteria (AerAOB) and Candidatus Brocadia fulgida-like anaerobic ammonium-oxidizing bacteria (AnAOB) were the predominant functional bacteria mixed together with each other and exhibited no distinct niche. However, AerAOB exhibited higher biodiversity at the thinner biofilm while AnAOB showed a stable but lower biodiversity. Moreover, the population of AnAOB was smaller along with more scattered cells at the thinner biofilm while they trended to form specific irregular cauliflower-like zooglea as biofilm thickness increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call