Abstract

In this paper, the dependency of surface tension and droplet radius is investigated by determination of pressure jump across the interface of a nano-scale droplet. For this goal, a gasliquid system consists of a nano-droplet and surrounding vapour is modelled using a diffuseinterface, free energy lattice Boltzmann method. The density and pressure distribution inside and outside the droplet can be obtained from LBM. Consequently, the surface tension is calculated by Laplace equation. Surface tension is found initially for carbon dioxide and then the results are extended for different materials and conditions. Interface thickness can be calculated as a function of material properties and conditions. The results show that, when the ratio of droplet radius to interface thickness (R* = R / h) is greater than 8.0, the surface tension is not a function of radius and it will be equal to the flat surface tension (constant regime). But if this ratio be less than 6.0, the surface tension decreases with radius in a linear pattern (linear regime). It is also shown that for a wide range of properties and conditions the quantitative behaviour of surface tension relative to droplet radius is the same.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.