Abstract

Sonodynamic therapy (SDT) is a novel tumor treatment that combines biosafe sonosensitizers and noninvasive focused ultrasound to eradicate solid tumors. Sonosensitizers such as 5-aminolevulinic acid and fluorescein have great potential in tumor treatment. Here, rodent subcutaneous and brain tumor models were used to evaluate the treatment effect of both 5-ALA- and fluorescein-mediated SDT. The subcutaneous tumor growth rates of both SDT groups were significantly inhibited compared with that of the control groups. For intracranial tumors, 5-ALA-SDT treatment significantly inhibited brain tumor growth, while fluorescein-SDT exerted no therapeutic effect in animals. The distribution of fluorescein in the brain tumor region underwent further assessment. Seven days post tumor implantation, experimental animals received fluorescein and were sacrificed for brain specimen collection. Analysis of the dissected brains revealed no fluorescence signals, indicating an absence of fluorescein accumulation in the early-stage glioma tissue. These data suggest that the fluorescein-SDT treatment response is closely related to the amount of accumulated fluorescein. This study reports the equivalent effects of 5-ALA and fluorescein on the treatment of somatic tumors. For orthotopic brain tumor models, tumor vascular permeability should be considered when choosing fluorescein as a sonosensitizer. In conclusion, both fluorescein and 5-ALA are safe and effective SDT sonosensitizers, and the tumor microenvironment and pathologic type should be considered in the selection of adequate sonosensitizers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call