Abstract
Industries need to design and improve their manufacturing systems while considering energy consumption and productivity concurrently. Manufacturing system simulation is often used to evaluate productivity when manufacturing systems are designed or improved. However, it is difficult to use simulation to evaluate energy consumption when designing and improving manufacturing systems. The purpose of our research is to establish a system for the concurrent evaluation of energy consumption and productivity in manufacturing system simulation. In this paper, first, requirements for a simulation to evaluate energy consumption and productivity are analyzed. Second, an evaluation system is proposed in consideration of the requirements. A Unified Modeling Language (UML) model that defines facility state transitions and relationships between the facility state and energy consumption is proposed. A manufacturing system simulation implemented in the proposed UML model is also proposed and developed. The proposed simulation is also implemented in a function to concurrently generate information on production throughput and energy consumption along a time progression. A system that provides a function to visually evaluate dynamic changes in the energy consumption per unit of production throughput along a time progression is also proposed and developed. Finally, a case study for semiconductor manufacturing systems is carried out to confirm the efficiency of our proposed evaluation system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.