Abstract
An FCN-8s network architecture for auto-segmentation was built based on Caffe. CT images of 121 patients with GO who have received radiotherapy at the West China Hospital of Sichuan University were randomly selected for training and testing. Two methods were used to segment the CTV of GO: treating the two-part CTV as a whole anatomical region or considering the two parts of CTV as two independent regions. Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) were used as evaluation criteria. The auto-segmented contours were imported into the original treatment plan to analyse the dosimetric characteristics. The similarity comparison between manual contours and auto-segmental contours showed an average DSC value of up to 0.83. The max HD values for segmenting two parts of CTV separately was a little bit smaller than treating CTV with one label (8.23±2.80 vs. 9.03±2.78). The dosimetric comparison between manual contours and auto-segmental contours showed there was a significant difference (p<0.05) with the lack of dose for auto-segmental CTV. Based on deep learning architecture, the automatic segmentation model for small target areas can carry out auto contouring tasks well. Treating separate parts of one target as different anatomic regions can help to improve the auto-contouring quality. The dosimetric evaluation can provide us with different perspectives for further exploration of automatic sketching tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Current Medical Imaging Formerly Current Medical Imaging Reviews
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.