Abstract

An accurate inversion of original reservoir resistivity is an important problem for waterflood development in oilfields in the middle-late development period. This paper describes the theoretical model of original resistivity recovery for a conglomerate reservoir established by petrophysical models, based on the stratigraphic model of reservoir vertical invasion of the conglomerate reservoir of an oilfield. Likewise two influencing factors of the resistivity change with a water-flooded reservoir were analyzed. The first one is the clay volume decrease due to an injected water wash argillaceous particle and the reservoir resistivity changes are influenced by it, and the other is to inject water to displace crude oil in the pore space leading to the increase of the water-bearing volume. Moreover the conductive ions of the injected water and the original formation water exchange and balance because of their salinity difference, and the reservoir resistivity changes are also influenced by them. Through the analysis of the above influential factors based on the fine identification of conglomerate lithologies the inversion models of three variables, including changes in the amount of clay, the resistivity of the irreducible water and the increase of the water bearing volume, were established by core analysis data, production performance and well logging curves information, and accurately recovered the original reservoir resistivity of the conglomerate. The original oil saturation of the reservoir was calculated according to multiple linear regression models. Finally, the produced index is defined as the difference of the original oil saturation and current oil saturation to the original oil saturation ratio, and it eliminates the effects of conglomerate lithologies and heterogeneity for the quantitative evaluation of flooded layers by the use of the principle of relative value. Compared with traditional flooding sensitive parameters which are oil saturation and water production rate, the interpretation accuracy of the production index can achieve 82%, provide technical support for the development programs determination and the well adjustment pattern in the second development of the oilfield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call