Abstract

Methods for evaluation of Young’s modulus (Em) of structural materials by instrumented indentation using ball indenter have been considered. All these techniques are based on the solution of elastic contact problems performed by H. Hertz. It has been shown that registration of the initial elastic region in the «load – displacement» indentation diagram provides the Em determination for metals and alloys. However, it is necessary to evaluate accurately the elastic compliance of a device, to use an indenter with a large radius R, and ensure a high surface quality of the test material in advance. Methods for Em determation, when indentation diagrams are recorded in the elastoplastic indentation region, should include the effect of plastic deformation on the elastic displacement calculated by H. Hertz expression. However, it appeared essential to determine the relation between the elastic αel and plastic h components of the total elastoplastic displacement α and the elastic displacement α0 estimated by H. Hertz expression for a definite indentation load. A close correlation between α0 and αel is revealed for steels, aluminum, magnesium, and titanium alloys when using indenters with a radius of R = 0.2 – 5 mm (diameter D = 0.4 – 10 mm) and maximum indentation load Fmax = 47 – 29430 N (4.8 – 3000 kgf). It is also shown that a gradual decrease in Em is observed with an increase in R(D) at the same degree of loading F/D2 for the same material. This fact was explained by the scale factor effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call