Abstract

ABSTRACTAluminum films have wide applications in micromechanical devices such as micro sensors and actuators. Therefore, their mechanical properties are very important for reliability evaluation. However, there is no standardized method to evaluate the mechanical properties of the materials used in MEMS(microelectromechanical system) devices since the measured mechanical properties are influenced by many factors such as the surface condition of materials, intrinsic limit of the measurement device, etc. Hence, it was intended to evaluate the mechanical properties of thin film, which is important in its mechanical operation. Because MEMS devices are usually operated in the elastic range, Young's modulus and yield strength were evaluated by using a microcantilever beam technique. First, A1 cantilever beams were fabricated using the silicon bulk micromachining technology to have various film thicknesses. The load-displacement curves during beam bending by nanoindentation method were then obtained. The linear relationship of the curve in elastic range was utilized in deriving Young's modulus of the A1 film, which gave reproducible results regardless of film thickness. In the high load range, the deviation from the linear relation was detected, so that yield strength of A1 film could be evaluated. It was found that the yield strength increases with decreasing film thickness. By applying the misfit dislocation theory and the Hall-Petch relationship, the theoretical estimation could predict the trend of yield strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call