Abstract

The spatial resolution of currently commercially available X-ray scintillators is limited by their thickness. For instance a scintillator with a high thickness, yields a high efficiency but suffers from a decrease in spatial resolution due to (optical) light spreading in the scintillation layer. For thinner scintillators the opposing case is observed. The filling of structures like self-organized aluminum oxide (Alox), permits the fabrication of very thick and therefore highly efficient scintillator matrices without losing spatial resolution, due to the matrix' channel-like structures which act as light guides. We filled such structured Alox-matrices with different scintillator materials with two different methods. Non-hygroscopic scintillators like GOS or LSO can by filled into the matrices by a sedimentation process, but hygroscopic materials like CsI:TI require a "dry" process like melting. The focus of this paper is on the evaluation of the X-ray imaging properties of these filled matrices with respect to the achievable spatial resolution and signal-to-noise ratio. Especially for the CsI:TI filled matrix we also studied the optical emission spectra, due to a loss of the dopant thallium during the melting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.