Abstract

Quantitative measurement of liquid mass distribution is demonstrated in an impinging-jet atomizing spray using a broadband, ∼80keV X-ray tube source for 2-D radiography and 3-D computed tomography (CT). The accuracy, precision, and sensitivity of these data are evaluated using narrowband, ∼10keV, synchrotron radiation from the Argonne National Laboratory Advanced Photon Source (APS) at the same flow conditions. It is found that the broadband X-ray tube source can be used for 2-D measurement of the equivalent path length (EPL) and 3-D CT imaging of liquid mass distribution with typical error of 5–10%. Data are compared for cases with and without the use of potassium iodide (KI), which at 15% concentration by mass increases the attenuation coefficient eightfold and enables 2-D and 3-D measurement of EPL with a signal-to-noise ratio (SNR) of 5:1 down to 15μm. At this concentration, the effects of energy-dependent attenuation (i.e., spectral beam hardening) are negligible for EPL up to 5mm. Hence, the use of broadband X-ray tube sources is feasible for many practical engineering sprays with a dynamic range in EPL of ∼330:1. The advantages and limitations of using broadband and narrowband X-ray sources are discussed, and recommendations for improving performance are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.